7.Binomial Theorem
medium

यदि $\left(\sqrt{ x }-\frac{ k }{ x ^{2}}\right)^{10}$ के द्विपद प्रसार में अचर में पद $405$ , है तो $| k |$ बराबर है 

A

$2$

B

$1$

C

$3$

D

$9$

(JEE MAIN-2020)

Solution

$\left(\sqrt{x}-\frac{k}{x^{2}}\right)^{10}$

$T_{r+1}={ }^{10} C_{r}(\sqrt{x})^{10-r}\left(\frac{-k}{x^{2}}\right)^{r}$

$T_{r+1}={ }^{10} C_{r} \cdot x^{\frac{10-r}{2}} \cdot(-k)^{r} \cdot x^{-2 r}$

$T_{r+1}={ }^{10} C_{r} x^{\frac{10-5 r}{2}}(-k)^{r}$

Constant term $: \frac{10-5 r}{2}=0 \Rightarrow r=2$

$T_{3}={ }^{10} C_{2} \cdot(-k)^{2}=405$

$k^{2}=\frac{405}{45}=9$

$k=\pm 3 \Rightarrow|k|=3$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.